VI042102 MATEMATIKA 2

Jam / minggu :	SEMESTER:				
2 jam	2 (dua)				
Kode Mata Kuliah	VI042102				
Nama Mata Kuliah	MATEMATIKA - II				
Silabus ringkas	Pada perkuliahan disini intinya mahasiswa diajarkan bagaimana menyelesaikan suatu persoalan matematik atau matematik aplikasi dalam bentuk persamaan diferensial linier, adapun metode penyelesaiannya dibagi menjadi dua kawasan atau daerah yaitu pada time domain menggunakan PD dan pada frequency domain in s menggunakan transformasi Laplace. Diakhir perkuliahan ini ditambahkan materi berupa logika matematika yang isinya mempelajari aksioma dan sifat khusus dari aljabar Boole.				
Tujuan	Mahasiswa diharapkan dapat:				
instruksional	- Menyelesaikan suatu bentuk persamaan diferensial linier baik itu orde satu				
Umum (TIU)	maupun orde dua dan high order				
	 Menyelesaikan persamaan diferensial secara langsung dengan menggunakan bentuk transformasi Laplace 				
	- Membentuk suatu model matematik sederhana dari persoalan fisis dengan				
	menggunakan persamaan diferensial				
	 Menggunakan aksioma dan sifat dari aljabar Boole untuk menyederhanakan setiap bentuk expresi Boolean. 				
Mata Kuliah	MATEMATIKA – I , TOPIK TURUNAN DAN INTEGRAL				
Penunjang	1, 101 10 10 10 10 10 10 10 10 10 10 10 10				
Penilaian	UTS	40 %			
	UAS	50 %			
	TUGAS 10 %				
Daftar Pustaka	1. Kastroud, Erwin sucipto (Pentj), MATEMATIKA UNTUK TEKNIK, Erlangga, Jakarta 1987				
	2. Erwin Kreyszig , ADVANCED ENGINEERING MATHEMATICS ,				
	John Wiley & Sons , Inc 1988				
	3. Murray R. Spiegel , Koko Martono (Pentj), "Schaum Series"				
	MATEMATIKA LANJUTAN untuk para insinyur dan ilmuwan,				
	Erlangga, Jakarta 1992				
	4. Gatot Sudarto , "Teknik Computer "SISTEM DIGITAL , Usaha Nasional , Surabaya				
	5. Murray R. Speigel, Pantur Silaban, Hans J. Wospakrik, "Schaum Series" TRANSFORMASI LAPLACE, Erlangga, Jakarta 1990				

Uraian Rinci Materi Kuliah

Minggu	Tujuan	Topik	Sub Topik	Referensi	Media
Minggu	Instruksional	Topik	Sub Topik	Keierensi	PT/OHP/LCD/
	khusus				PC
1	* Memperkenalkan pada mahasiswa tentang pengertian PD beserta tipe-ti penya * Agar mahasiswa dapat menyelesaikan / menjawab dari semua bentuk dan tipe dari suatu PD	* Apa itu PD * Klasifikasi PD * Penyelesaian dari PD	* Definisi PD * Tipe dari PD * Orde dari PD * Derajad dari PD * Masing-masing contoh dari PD * Contoh solusi dari PD * Jawab homogen dan Jawab non homogen	1,2,3	PT
2	S D A	* Bentuk-bentuk PD linier homogen	* Orde satu * Orde dua * Orde tinggi	1,2,3	PT
3	* Agar mahasiswa dapat menyelesai- kan / menjawab PD orde satu ter- hadap masukan tertentu	* Bentuk-bentuk PD linier non homogen	* Orde satu terhadap ma- sukan fungsi : - konstan - exponential - linier (ramp)	1,2,3	PT
4	S D A	* Bentuk-bentuk PD linier non homogen	* Orde satu terhadap masukan fungsi: - sinusoida * Orde satu terhadap masukan kombinasi fungsi: - exponential dan ramp - exponential dan sinusoida	1,2,3	PT
5	* Agar mahasiswa dapat menyelesai- kan / menjawab PD orde dua ter- hadap masukan tertentu	* Bentuk-bentuk PD linier non homogen	* Orde dua terhadap ma- sukan fungsi : - konstan - exponential - ramp - sinusoida	1,2,3	PT
6	S D A	* Bentuk-bentuk PD linier non homogen	* Orde dua terhadap ma- sukan kombinasi fungsi: - exponential dan ramp - exponential dan sinusoida	1,2,3	PT
7	* Agar mahasiswa dapat menyelesai- kan / menjawab PD orde tinggi terhadap masukan tertentu	* Bentuk-bentuk PD linier high orde	* Trehadap beberapa masukan fungsi: - konstan - exponential - sinusoida - ramp - exponen + ramp - exponen + sinus * Beberapa contoh penerapan PD pada bidang elektro	1,2,3	PT

U T S					
8	* Memperkenalkan konsep dasar sua- tu bentuk tranfor – masi time continue	* Apa itu Transformasi Laplace * eksistensi dari TL	* Definisi dari TL * Syarat perlu dan cukup * ROC * Bidang complex S	2,3,5	ОНР
9	* Diharapkan maha- siswa dapat me – nentukan bentuk transformasi la – place dari berbagai fungsi / sinyal kon- tinyu	* Mendapatkan T L dari beberapa fungsi	* T L dari fungsi : - konstan - exponensial - sinusoida - ramp - kombinasi fungsi * T L dari fungsi periodik	2,3,5	ОНР
10	* Mengenalkan beberapa sifat – sifat T. Laplace pada berbagai fungsi / sinyal	* Beberapa sifat TL	* Linearity * Time differntiation * Time integration * Time shifting * frequency diffrentiation * Time and frequency scale	2,3,5	ОНР
11	S D A	* Beberapa sifat TL	* Initial value theorem * Final value theorem * Convolution * Beberapa contoh soal	2,3,5	OHP
12	* Agar Mahasiswa dapat menarik in- vers dari frekuen- domain ke time domain untuk ber- bagai bentuk fungsi / sinyal	* Invers T L	* Metode pecahan parsial (Heaviside method) * Integral convolution * Residue method * Contoh-contoh kasus	2,3,,5	ОНР
13	* Mahasiswa dapat menggunakan T. Laplace untuk menyelesaikan PD atau suatu bentuk model ma- tematik (dalam – bentuk PD)	* Penggunaan TL pada PD homogen dan non homo gen	* Penyelesaian PD linier orde satu dan dua homo- gen * Penyelesaian PD linier orde satu dan dua non homogen	2,3,5	ОНР
14	S D A	* Penggunaan TL pada PD homogen dan non homo gen	Penyelesaian PD linier high order Peenerapan dari T L pada bidang elektro	2,3,5	ОНР
15	* Memperkenalkan matematika logika Aljabra – Boolean dan penggunaan- nya.	* Aljabar Boolean	* Aksioma dasar Boole * Sifat-sifat Boole * Simplifikasi dari expresi Boolean	4	PΤ
16	S D A	* Aljabar Boolean	* Penggunaan aljabar Boole	4	PT
		U	A S		